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Abstract

A method to create a positive Legendre expansion from truncated Legendre cross section libraries is
presented.  Cross section moments of order two and greater are modified by a constrained least squares
algorithm, subject to the constraints that the zeroth and first moments are unchanged, and that the
standard discrete ordinate scattering matrix is positive.  A method using the maximum entropy
representation of the cross section, which reduces the error in the modified moments is also presented.
These methods are implemented in the PARTISN code, and numerical results from a transport
calculation using highly anisotropic scattering cross sections with an exponential discontinuous spatial
scheme are presented. 

1 Introduction

The scattering cross section used in the discrete ordinates solution of the neutron transport equation is
usually represented by a truncated Legendre expansion (Bell 1970).  If there is a large degree of
anisotropy, the expanded cross section may exhibit non-physical negative regions.  When these negative
regions are severe enough, negative discrete ordinates scattering sources may result.  The Monte Carlo
community has developed several methods which address the issue of negative Legendre scattering
cross sections, and Brockmann provides a survey of some of these (Brockmann 1981).  In this work we
perform a least squares minimization upon the Legendre cross section moments in an effort to find a
positive cross section representation which may be used directly in a discrete ordinate transport code.

One of the first instances that a least squares method has been applied to Legendre cross section
function expansions is in the code CLEM (Slavik 1968), which used least squares minimization to
adjust the Legendre moments in an attempt to gain a positive expansion.  The angular domain is
discretized on an equally spaced 101 point fixed mesh.  Positivity is checked by testing the Legendre
expansion of the approximate moments for negativity at each of the 101 mesh points.  The authors of
CLEM state that a disadvantage of their procedure is that the first moment of the cross section will be
changed, affecting the transport calculation and the resulting flux.  They have adapted CLEM to hold
the first moment constant, but comment that it would often be impossible to find an approximate
nonnegative truncated Legendre series.

Landesman and Morel (Landesman 1989) have proposed a constrained least squares method to adjust
the Legendre moments of the one dimensional angular Fokker-Planck operator.  To impose positivity
on the truncated Legendre cross section expansion, the Legendre moments are modified subject to the
constraints that the zeroth and first order moments remain unchanged, and that every element in the one-
dimensional Galerkin (Morel 1989) scattering matrix using the least squares adjusted moments is
positive.  The modified Legendre expansion of the cross section is only required to be positive at the
quadrature points.  The first two constraints preserve the momentum transfer properties of the scattering



1 
 D5 , (1)

! 
 (1 
 (D5 , (2)

S
 M! 
 M(D5 . (3)

M 
 D	1 . (4)

Mm,(l,k) 

2l�1
4%

(2	 k,0)
(l	 |k|) !
(l� |k|) !

1
2 Yl,k(6̂m) . (5)

cross section.  The result is N-1 Legendre moments which are unique to its particular quadrature set.

In this paper we extend Landesman and Morel’s method to multidimensional Galerkin quadrature, and
show that unsatisfactory results are obtained.  The method is then applied to standard multidimensional
SN quadrature, with much more positive results.  The relative error of the modified moments is reduced
by applying a method using the maximum entropy representation of the scattering cross section.  Finally,
results from a transport calculation using this method are presented.

2  Least Squares with Multidimensional Galerkin Quadrature

A Galerkin scattering matrix, as defined by Morel (Morel 1989), is constructed from three fundamental
matrices.  These three matrices are: a discrete-to-moment matrix, a diagonal cross section matrix, and
a moment-to-discrete matrix.  The discrete-to-moment matrix maps the discrete values of the angular
flux to angular flux moments.  The cross section matrix maps the angular flux moments to angular
scattering source moments.  Finally, the moment-to-discrete matrix maps the scattering source moments
to discrete angular source values.  This sequence is illustrated as follows:

Here S is the discrete scattering source and 5 is the discrete angular flux.  The Galerkin approximation
is defined such that the trial space elements obtained by interpolating the discrete scattering source have
the same moments as those of equation (2).  This requirement results in the relationship

To construct the matrix M  for three-dimensional Galerkin quadrature, a subset of spherical harmonics
for the trial and weighting space is used.  Morel has found the following subset of spherical harmonics,
when used in conjunction with the triangular Legendre-Tchebychev (Lathrop 1965) quadrature, produce
an invertible M  matrix of the form

The limits on l and k in equation (5) are;
l = 0, N-1,   k = -l, l,
and l = N, k < 0,
and l = N, k > 0 odd,
and l = N + 1, k < 0 even.

Here the row index m is the mth quadrature direction, the column index (l,k) is related to each
combination of l and k, and N is the quadrature or SN order.  This results in being able to use N + 1
Legendre cross sections moments with three-dimensional Galerkin quadrature.
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A Fortran code was written to create the three-dimensional Galerkin quadrature matrices, and then
attempt a least squares adjustment of the Legendre scattering cross section moments subject to the
constraints that the zeroth and first order moments remain unchanged, and that every element in the
multidimensional Galerkin scattering matrix, , is positive.  The functional minimized isM (D

where  is the least squares modified moment of order l.  The constrained least squares algorithm used)
�

l
is the LSEI (Hanson 1978) routine from the SLATEC (Vanevender 1982) subroutine library.  SLATEC
is publically available on the world wide web and was also used by Landesman and Morel.  We refer
to this method as the Least Squares Galerkin Quadrature, or LSGQ.

This method is analyzed with two sets of P4 cross sections.  The Legendre expansion for test case one
is strictly positive.  Test case two is a downscatter cross section for hydrogen, from energy group 18 to
22, from the Los Alamos 30 group P4 MENDF5 (Little 1986) cross section library.  Table 1 lists the
scattering cross section moments for test case one, and the resulting moments from the LSGQ method
for SN orders S8, S10, and S12.  The code calculated nine Legendre moments for S8, eleven for S10, and
thirteen for S12, which is the maximum number of moments contained within the diagonal matrix * in
the three-dimensional Galerkin quadrature formulation.  The relative error of the least squares modified
moments compared to the original Legendre moments of orders two through four are also reported.

It is noted from Table1 that none of the cross section moments are changed for quadrature orders eight
and 10.  This is expected since the cross section expansion in this case is positive everywhere.  However,

for the S12 quadrature, the least squares algorithm adjusted the second through fourth order moments as
much as 50 percent.  The least squares algorithm modifies the Legendre moments only if an element of
the multidimensional Galerkin scattering matrix is negative, which is a constraint that has been placed
on the system.  This indicates that the three-dimensional Galerkin scattering matrix is not positive, even
though the Legendre expansion of the scattering cross section is positive everywhere.  Further tests
indicate that when even higher ordered Galerkin scattering matrices are used, the resulting LSGQ
modified moment expansion differs more from the original positive cross section.

Table 2 lists the LSGQ modified moments and their relative error with varying SN orders for the second
test cross section.   Again, the relative errors for moments of order two through four tend to increase

S8 - P9 S10 - P11 S12 - P13

Moment
 Order

Original Least
Squares

Rel.
Error

Least
 Squares

Rel.
Error

Least
Squares

Rel.
Error

0 1.0 1.0 0.0 1.0 0.0 1.0 0.0

1 0.5 0.5 0.0 0.5 0.0 0.5 0.0

2 0.2 0.2 0.0 0.2 0.0 0.1976 0.012

3 0.005 0.005 0.0 0.005 0.0 7.381E-3 0.563

4 0.001 0.001 0.0 0.001 0.0 1.265E-3 0.265

Table 1: LSGQ modified Legendre moments of test case one for varying SN orders
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when a higher ordered Galerkin scattering matrix is used in the least squares calculation.  The errors in
the LSGQ modified moments are large enough to bring the method into question.

To summarize, we have demonstrated some peculiar behavior of the LSGQ method.  When the original
Legendre cross section expansion is inherently positive, the LSGQ method modifies the original
moments as higher ordered Galerkin quadrature scattering matrices are used, which indicates that the
elements of the higher ordered Galerkin scattering matrices are not positive.  A possible cause may be
ill-conditioning introduced in the matrix inversion process.  The condition number of the Galerkin
moment to discrete matrix, M , increases as the quadrature order is increased.  This may result in the
numerical inversion of M  having increased roundoff error and possibly introduce small negative
components in the Galerkin scattering matrix.  In addition to the possible ill-conditioning, we note that
while the Galerkin representation of the flux is positive at the quadrature points, the interpolate of the
angular flux may contain negative regions.  Multiplication of the interpolate by a scattering cross section
may excite these non-positive regions.  Thus the positivity of the scattering source may also be a
function of the stability of the angular flux interpolant.  Further research in this area is required.

The relative errors of the LSGQ modified moments increase as the Galerkin quadrature is increased.
A higher quadrature order allows the least squares algorithm to use more Legendre moments in its
search for a positive Galerkin scattering matrix.  It is reasonable, and desirable,  that the errors should
decrease as more Legendre moments are used to represent a scattering cross section, but this is not the
case with the LSGQ method.

The second test case also resulted in modified cross section moments that had rather large relative errors.
Such error in the cross section moments may affect the results of a transport calculation, especially if
the angular flux moments of order two or greater are relatively large in magnitude.  For this reason, the
multidimensional  LSGQ method is not recommended as a viable method for the generation of a positive
scattering source.  This is contrary to the one-dimensional method ( Landesman, 1989), which works
well.  The reason for the failure of the multidimensional method is not understood.

3  Least Squares Modified Cross Section Moments with Standard SN Quadrature 

Each element of the standard SN scattering matrix,

S8 - P9 S10 - P11 S12 - P13

Moment
 Order

Original Least
Squares

Rel.
Error

Least
 Squares

Rel.
Error

Least
Squares

Rel.
Error

0 0.37248 0.37248 0.0 0.37248 0.0 0.37248 0.0

1 0.05706 0.05706 0.0 0.05706 0.0 0.05706 0.0

2 -0.17203 -9.619E-2 0.441 -8.866E-2 0.485 -8.653E-2 0.497

3 -0.08190 -5.003e-2 0.389 -5.499E-2 0.329 -3.930E-2 0.520

4 0.10697 1.851E-2 0.827 2.013E-2 0.812 9.530E-3 0.911

Table 2:  LSGQ modified Legendre moments of test case two for varying SN orders
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is guaranteed to be positive if the quadrature weights are positive and the Legendre expansion of the
cross section function has a positive value at each combination of .  To find a positive(6̂m1

# 6̂m)
truncated Legendre expansion of the scattering cross section, we propose a variation of LSGQ method.
The following functional is minimized,

subject to the constraints that the zeroth and first Legendre cross section moments remain unchanged,
and that each element in the standard SN scattering matrix is positive, or

The third constraint, equation (9) ensures a positive representation of the scattering cross section at all
points where the Legendre cross section function will be evaluated.  This functional differs from the one
minimized in the LSGQ method by the addition of the weight,

The purpose of this weight is to allow more freedom to adjust moments that are small in magnitude.
If a cross section moment is small compared to the zeroth moment, it is less likely to make a large
contribution to the cross section expansion, and therefore have little effect on the results of a transport
calculation.  We refer to this method as least squares with SN quadrature, or LSSN.

A Fortran code has been written to calculate the LSSN modified cross section moments.  This code takes
the original cross section moments as input, and then outputs the least squares solution to the order
requested by the user.  If the least squares solver cannot satisfy the constraints with the requested output
Legendre order, it aborts the procedure, and indicates that a higher Legendre order is required for a
positive solution.  The final order of the LSSN modified Legendre expansion which is required for
positivity is dependent on the average cosine of the scattering angle.  The required order is only a
function of  since only the zeroth and first cross section moments are fixed, while the upper momentsµ̄
can be modified in the least squares sense.

Test cases one and two were again used to analyze this method.  For these calculations, the code
performed the LSSN method on the P4 Legendre cross section moments, and returned Legendre
moments of order one less that the user requested quadrature order, i.e., a 13th order expansion was
returned when an S14 quadrature was used.

The Legendre expansion of test case one is strictly positive, and the LSSN method returned cross section
moments which matched the original moments exactly, regardless of the SN order requested.  This
behavior is expected since the original Legendre expansion does not need to be modified for the cross
section to be nonnegative.  This is unlike the LSGQ method, which began to modify the moments as the
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SN and Legendre order was increased.

Table 3 lists the original moments for test case two, the calculated  moments using the LSSN method,
and the relative error of the moments of order two through four for quadratures of S6 though S10.  These
data begin with S6 since the LSSN method calculated a positive cross section expansion with only a P5

expansion.  The relative error of the cross section moments is much lower than the relative error from
the LSGQ method.  Also, the relative error decreases as the output Legendre order is increased, which
is a desirable feature. 

To summarize, the LSSN method produces modified Legendre moments that are better behaved than
the LSGQ method.  The relative error of the modified moments for each test case is less than those of
the LSGQ method, and they decrease with increasing Legendre order.  Each test case also produces a
set of Legendre moments which appear to approach the original moments as the requested Legendre
order increased.

4  The Role of Maximum Entropy with the LSSN Method

In an effort to reduce the relative error of the LSSN modified cross section moments even further,  we
have implemented an algorithm which uses the method of maximum entropy (Moskelev 1993) (Baker
1995).  The LSSN method described in the previous section uses the given cross section moments (up
to order L) as input, which is often of order less than required for a positive cross section representation.
The higher cross section moments, of order L+1 and greater, which are required for positivity, are
initially set to zero, resulting in a truncated expansion which may be far from convergent.  This
truncated series is considered as an initial guess for the LSSN algorithm.  It is postulated that if the least
squares solver had a more convergent, and hence a more positive series from which to work, less of a
change to the original Legendre moments of order two or greater would be required.

To find more moments, the exponential representation of the scattering cross section found from the
maximum entropy technique is used.  By projecting the exponential representation over Legendre
polynomials of order greater than that given in the cross section library, as shown here,

estimated Legendre moments of order L+1 and greater can be calculated.  Thus, if an N-1 order
expansion is requested using the LSSN method with an SN quadrature of order N, it can use these

S6 - P5 S8 - P7 S10 - P9

Order Original LSSN Rel Error LSSN Rel Error LSSN Rel Error

0 0.3727 0.3727 0.0 0.3727 0.0 0.3727 0.0

1 0.05707 0.05707 0.0 0.05707 0.0 0.05707 0.0

2 -0.1728 -0.1190 .3081 -0.1355 0.2124 -0.1451 0.1564

3 -0.08191 -0.04113 0.4978 -0.05614 0.3145 -0.06480 0.2088

4 0.1069 0.04167 0.6105 0.05593 0.4771 0.06166 0.4235

Table 3:  LSSN modified moment comparison for test case two



additional moments as an initial guess for moments of order L+1 to N-1.  This method is denoted as
LSSN/ME, where the ME is an abbreviation for maximum entropy.  If the exponential representation
is not available, then one can revert to using the LSSN method.

This proposal was analyzed using the LSSN Fortran program presented previously.  The program used
N-1 input moments as the initial expansion, where the L+1 to N-1 upper moments were calculated from
the cross section’s exponential representation.  If the cross section expansion is strictly positive, as is
the case for test case one, then no least squares modification is required.  For test data we use the group
one self scattering cross section for carbon  from the Los Alamos 30 group MENDF library.  Table 4
lists the original moments, the resulting LSSN/ME modified moments, and the relative error for
moments of order two through four.  The results presented  here are for a ninth order Legendre
expansion with an S10 quadrature.  The relative error of the second order moment is slightly greater than
the case when the LSSN algorithm is used.  However, the relative error of the third and fourth order
moments have improved. 

Further comparison of the LSSN and LSSN/ME least squares methods using cross sections from the Los
Alamos MENDF5 P4 cross section library have been made.  These data indicate that the LSSN/ME
method resulted in approximately the same, or a significantly lower, relative error of the modified
moments.  It is therefore recommended that the LSSN/ME method be used over the LSSN method when
the approximated moments from maximum entropy are available.

5 Results from a Sample Transport Problem

The LSSN/ME method was implemented in the parallel discrete ordinate transport code PARTISN
(Alcouffe 1998).  In this section, the results for an example problem consisting of a cube of natural
carbon are presented.  The atom density of the carbon is 0.1314 barns/cm2.  The cube is 55 cm on a side,
with a spatial mesh of 22x22x22 in the x, y, and z directions respectively.  The cross sections used are
from the Los Alamos MENDF 30 group P4 cross section set.  Only the first two groups of the cross
section set were used for this example problem.  The scattering cross sections at these energies are
forward peaked and their P4 Legendre expansions exhibit negative regions in the interval from

.  The mean free path for neutrons in the first energy group is on the order of 5 cm, thus the	1�µ0��1
carbon cube is approximately 11 mean free paths in the x, y, and z directions.

The problem was run with a Legendre-Tchebychev S16 quadrature.  The fixed angular surface source was
placed at the center four mesh cells on the z = 0 face.  Only one angular direction was given a non-zero

P9 - S10 from P9

(LSSN/ME)
P9-S10 from P4

(LSSN)

Order Original LSSN/ME Rel Error LSSN Rel Error

0 0.070211 0.070211 0.0 0.070211 0.0

1 0.063745 0.063745 0.0 0.063745 0.0

2 0.052652 0.052868 0.004102 0.052476 0.003342

3 0.039704 0.040034 0.008312 0.03896 0.01874

4 0.027427 0.02765 0.008244 0.02582 0.05839

Table 4:  LSSN/ME modified moments comparison for carbon cross section



value, resulting in a beam along one quadrature direction.  The direction cosines for this direction are
µ = -0.1026789, � = -0.1026789, and ! = 0.9894009, which correspond to the direction which is closest
to normal on the front face. The fixed source was only specified in group one.  Since results of this
problem using the linear discontinuous spatial scheme resulted in negative scalar fluxes, the exponential
discontinuous (Wareing 1997) scheme was chosen for the spatial discretization.

Also included are the results from a Monte Carlo calculation using the code MCNPTM (Briesmeister,
1997).  The cross sections used in the MCNP calculation are also from the Los Alamos MENDF 30
group cross section library, which have been processed with the maximum entropy technique and
divided into 30 equiprobable angular bins, using Baker’s XREP module (Baker 1996).  The MCNP
calculation used 20 million histories, and tallies were performed on an 11x11x11 spatial meshing.

Figures 1 and 2 present the resulting scalar fluxes for groups one and two respectively.  The SN scalar
flux was volume averaged over the appropriate spatial cells to recover a cell averaged quantity
equivalent to the coarser meshing of the Monte Carlo calculation.  The scalar flux in these figures is for
the spatial cells bordering the z = 55 cm face, fixed in the center along the x direction, and varied along
the y direction. The SN solutions using the LSSN/ME scattering source method shows good agreement
with Monte Carlo solution.  The errorbars on the MCNP scalar fluxes indicated in the figures is for one
standard deviation.

 6 Conclusions

In this paper, we have extended the least squares method proposed by Landesman and Morel to
multidimensional Galerkin quadrature.  This was shown to produce unsatisfactory results, and further
study is needed into the origin of this failure.  We have therefore developed a variation to this method
which modifies the Legendre cross section moments in a least squares sense such that the zeroth and
first moments remain unchanged, and that standard discrete ordinate scattering matrix is positive.  To
reduce the relative error of the modified moments, a method using the maximum entropy representation
of the cross section has been devised.  Moments of order L+1 and greater are estimated by projecting
the exponential representation of the cross section over the appropriate Legendre polynomials.  These
extra moments are then used as input to the constrained least squares algorithm.  Results from an
anisotropic carbon cross sections demonstrated a reduction in the relative error of the modified
moments.  Finally, the carbon example problem demonstrated that the LSSN/ME method produced
results that were consistent with a multigroup Monte Carlo calculation on a difficult, highly anisotropic
problem with exponential discontinuous spatial differencing.
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Figure 1:  Group 1 scalar flux from fine mesh sample carbon problem
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Figure 2: Group 2 scalar flux from fine mesh sample carbon problem
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